\(\int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx\) [1118]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 17, antiderivative size = 41 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=-\frac {2 (1-x)^{3/2}}{\sqrt {1+x}}-3 \sqrt {1-x} \sqrt {1+x}-3 \arcsin (x) \]

[Out]

-3*arcsin(x)-2*(1-x)^(3/2)/(1+x)^(1/2)-3*(1-x)^(1/2)*(1+x)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {49, 52, 41, 222} \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=-3 \arcsin (x)-\frac {2 (1-x)^{3/2}}{\sqrt {x+1}}-3 \sqrt {x+1} \sqrt {1-x} \]

[In]

Int[(1 - x)^(3/2)/(1 + x)^(3/2),x]

[Out]

(-2*(1 - x)^(3/2))/Sqrt[1 + x] - 3*Sqrt[1 - x]*Sqrt[1 + x] - 3*ArcSin[x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (1-x)^{3/2}}{\sqrt {1+x}}-3 \int \frac {\sqrt {1-x}}{\sqrt {1+x}} \, dx \\ & = -\frac {2 (1-x)^{3/2}}{\sqrt {1+x}}-3 \sqrt {1-x} \sqrt {1+x}-3 \int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx \\ & = -\frac {2 (1-x)^{3/2}}{\sqrt {1+x}}-3 \sqrt {1-x} \sqrt {1+x}-3 \int \frac {1}{\sqrt {1-x^2}} \, dx \\ & = -\frac {2 (1-x)^{3/2}}{\sqrt {1+x}}-3 \sqrt {1-x} \sqrt {1+x}-3 \sin ^{-1}(x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.02 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=-\frac {\sqrt {1-x} (5+x)}{\sqrt {1+x}}+6 \arctan \left (\frac {\sqrt {1-x^2}}{-1+x}\right ) \]

[In]

Integrate[(1 - x)^(3/2)/(1 + x)^(3/2),x]

[Out]

-((Sqrt[1 - x]*(5 + x))/Sqrt[1 + x]) + 6*ArcTan[Sqrt[1 - x^2]/(-1 + x)]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(70\) vs. \(2(33)=66\).

Time = 0.33 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.73

method result size
risch \(\frac {\left (x^{2}+4 x -5\right ) \sqrt {\left (1+x \right ) \left (1-x \right )}}{\sqrt {-\left (-1+x \right ) \left (1+x \right )}\, \sqrt {1-x}\, \sqrt {1+x}}-\frac {3 \sqrt {\left (1+x \right ) \left (1-x \right )}\, \arcsin \left (x \right )}{\sqrt {1+x}\, \sqrt {1-x}}\) \(71\)

[In]

int((1-x)^(3/2)/(1+x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(x^2+4*x-5)/(-(-1+x)*(1+x))^(1/2)*((1+x)*(1-x))^(1/2)/(1-x)^(1/2)/(1+x)^(1/2)-3*((1+x)*(1-x))^(1/2)/(1+x)^(1/2
)/(1-x)^(1/2)*arcsin(x)

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.29 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=-\frac {{\left (x + 5\right )} \sqrt {x + 1} \sqrt {-x + 1} - 6 \, {\left (x + 1\right )} \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) + 5 \, x + 5}{x + 1} \]

[In]

integrate((1-x)^(3/2)/(1+x)^(3/2),x, algorithm="fricas")

[Out]

-((x + 5)*sqrt(x + 1)*sqrt(-x + 1) - 6*(x + 1)*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x) + 5*x + 5)/(x + 1)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.34 (sec) , antiderivative size = 131, normalized size of antiderivative = 3.20 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=\begin {cases} 6 i \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} - \frac {i \left (x + 1\right )^{\frac {3}{2}}}{\sqrt {x - 1}} - \frac {2 i \sqrt {x + 1}}{\sqrt {x - 1}} + \frac {8 i}{\sqrt {x - 1} \sqrt {x + 1}} & \text {for}\: \left |{x + 1}\right | > 2 \\- 6 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} + \frac {\left (x + 1\right )^{\frac {3}{2}}}{\sqrt {1 - x}} + \frac {2 \sqrt {x + 1}}{\sqrt {1 - x}} - \frac {8}{\sqrt {1 - x} \sqrt {x + 1}} & \text {otherwise} \end {cases} \]

[In]

integrate((1-x)**(3/2)/(1+x)**(3/2),x)

[Out]

Piecewise((6*I*acosh(sqrt(2)*sqrt(x + 1)/2) - I*(x + 1)**(3/2)/sqrt(x - 1) - 2*I*sqrt(x + 1)/sqrt(x - 1) + 8*I
/(sqrt(x - 1)*sqrt(x + 1)), Abs(x + 1) > 2), (-6*asin(sqrt(2)*sqrt(x + 1)/2) + (x + 1)**(3/2)/sqrt(1 - x) + 2*
sqrt(x + 1)/sqrt(1 - x) - 8/(sqrt(1 - x)*sqrt(x + 1)), True))

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=\frac {{\left (-x^{2} + 1\right )}^{\frac {3}{2}}}{x^{2} + 2 \, x + 1} - \frac {6 \, \sqrt {-x^{2} + 1}}{x + 1} - 3 \, \arcsin \left (x\right ) \]

[In]

integrate((1-x)^(3/2)/(1+x)^(3/2),x, algorithm="maxima")

[Out]

(-x^2 + 1)^(3/2)/(x^2 + 2*x + 1) - 6*sqrt(-x^2 + 1)/(x + 1) - 3*arcsin(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 70 vs. \(2 (33) = 66\).

Time = 0.30 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.71 \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=-\sqrt {x + 1} \sqrt {-x + 1} + \frac {2 \, {\left (\sqrt {2} - \sqrt {-x + 1}\right )}}{\sqrt {x + 1}} - \frac {2 \, \sqrt {x + 1}}{\sqrt {2} - \sqrt {-x + 1}} - 6 \, \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \]

[In]

integrate((1-x)^(3/2)/(1+x)^(3/2),x, algorithm="giac")

[Out]

-sqrt(x + 1)*sqrt(-x + 1) + 2*(sqrt(2) - sqrt(-x + 1))/sqrt(x + 1) - 2*sqrt(x + 1)/(sqrt(2) - sqrt(-x + 1)) -
6*arcsin(1/2*sqrt(2)*sqrt(x + 1))

Mupad [F(-1)]

Timed out. \[ \int \frac {(1-x)^{3/2}}{(1+x)^{3/2}} \, dx=\int \frac {{\left (1-x\right )}^{3/2}}{{\left (x+1\right )}^{3/2}} \,d x \]

[In]

int((1 - x)^(3/2)/(x + 1)^(3/2),x)

[Out]

int((1 - x)^(3/2)/(x + 1)^(3/2), x)